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Abstract. The conductivity of an amorphous sample at low temperatures is calculated. While
Mott’s variable range hopping theory considers infinite samples, the proposed formalism treats
finite ones. It turns out that this is a crucial difference. The model predicts a transition
temperature (Tc) between two conductivity behaviours: ln(σ ) ∼ −(T L2 /T )1/3 for T < Tc, and
ln(σ ) ∼ −(T H2 /T )1/2 for T > Tc (the transition temperature,Tc, depends on the Fermi energy
and on the sample’s characteristics). The former resembles the simple two-dimensional Mott
conductivity behaviour, while the latter resembles the Efrös and Shklovskiı̆ conductivity theory.
We also show a simple connection between these temperatures:Tc = (T H2 )3/(T L2 )

2.

In 1969 Mott presented his variable range hopping (VRH) theory of an amorphous system [1].
The theory predicted that for ad-dimensional amorphous sample the electrical conductivity
(σ ) has the following temperature dependence: ln[σ(T )] ≈ −T −1/(d+1). This theory was
found to be in good agreement with early experiments on three-dimensional (3D) [2] and on
two-dimensional (2D) [3] systems, where Mott’s theory predicts

σM ≈ exp[−(T2/T )
1/3]. (1)

In 1975 Efr̈os and Shklovskiı̆ (ES) introduced a model for VRH [4], which took into account
the Coulomb interaction between localized electrons. Their model applied the phenomenon
of the Coulomb gap (CG) within the density of states. They showed that the account of the
CG leads to the following 2D VRH conductivity

σES ≈ exp[−(T2/T )
1/2] (2)

which resembles the one-dimensional Mott conductivity.
This model also was found to be in good agreement with very low temperature experiments,

where the CG cannot be ignored (see, for example, [5]. For experiments which predict a
negligible CG, see [6]).

In this paper we present a rigorous calculation of the conductivity in the resonant tunnelling
(RT) regime, i.e. in the regime where the coherence length is longer than the sample size, and
in the absence of the Coulomb interactions. It should be emphasized that the Mott and ES
theories assume an infinite sample. This paper shows that at very low temperatures the finite
sizes of the samples have an important effect on the conductivity. The presented model exhibits
a transition temperatureTc, above which (T > Tc) the temperature dependence behaves like
(2), while whenT < Tc it behaves like (1). Despite the similarity between the present model
and Mott and ES theories the presented model is based on resonant tunnelling and not on VRH
as in the Mott and ES theories.
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Figure 1. The substantial contribution to the current through the barrier comes from the resonant
impurities, i.e. from the impurities whose energy is equal to the incoming electrons’ energy. The
white circles represent the resonance impurities.

Take a system where electrons are scattered over a large number of impurities (figure 1),
which are uniformly placed in an opaque potential barrier.

The stationary-state Schrödinger equation can then be written as

∇2ψ + (E − U)ψ = −
∑
i

D(|ri − r|)ψ. (3)

Hereinafter, we use the units ¯h = 2m = 1 (Planck constant and the electron mass).∇2 is the
2D Laplacian,E is the incoming electron energy,U is the barrier potential:

U ≡
{
V for −L < x < L

0 otherwise

and theD are the impurity potentials, which are short range ones (see [7] and [8]).
V is a positive potential, and thus the electrons with energy 0< E < V tunnel through

the barrier. The exact form of the impurities’ potentials (D) is unimportant as long as they
are short-range ones, i.e. on atomic scales. Mathematically, they can be represented by the
impurity D function(IDF—see [7]), which is infinitely shallower than the two-dimensional
delta function (2DDF), but, unlike the 2DDF, it has an eigenvalue (sayEi0). Because of its
infinitely small dimensions, the short-range potential can be fully determined by this single
parameter (the eigenvalue). Thus, each impurity creates a resonance levelEi ≡ V − Ei0,
to which the particles can tunnel. If the electrons energy equals the resonance energy of a
specific impurity, the impurity presence will be felt in the conductance, since many electrons
will tunnel through it. But if their energy does not match, the influence of the specific impurity
will be negligible.

The solutionψ(r) can be written as a summation over the contributions from each one of
the impuritiesψi(r), i.e.

ψ(r) =
∑
i

ψi(r, ri ). (4)

For a specific incoming particle’s energy, only the resonance impurities contribute considerably
toψ , the rest can be ignored since their contribution is exponentially smaller.

Therefore, one can evaluateψ(r) by assuming that only the impurities which are at
resonance are present.
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The contribution toψ(r) from a single impurity (for simplicity let us assume thatri = 0)
in the case of a very opaque barrier (high and wide, for which

√
VL � 1) has the following

form (within the leading approximation ofr−1):

ψi(r)
∼= f eik|r−L |

√
r

(5a)

wherer ≡ |r|, k = |k| = √E and the scattering amplitude (f ) has the following form [10]:

f (θ, E) = C e−
√
V−E cos2 θ(L−xi )−

√
V−E(L+xi )

1
2 ln(V−E

E0i
) + i1i

(5b)

wherexi andE0i are thex location of theith impurity and its resonance energy respectively.
C changes slowly with the energy,θ is the (outgoing) scattering angle and1i ∼
exp[−2

√
V − E(L − |xi |)] is the resonance width. Notice that the homogenous solution

of (3) is exponentially small, and thus is ignored in (4).
Hence, the contribution to the scattered wavefunction from the resonant impurities (those

for whichE ∼= V − E0i) is

ψres
i ∼ exp

[
−2κ|xi | −

(√
V − E cos2 θ − κ

)
(L− xi) + ikr

]
(6)

whereκ ≡ √V − E.
Notice that equation (5) and thus also equation (6) include intrinsically the finite width

of the barrier. If the barrier was not finite (or if the coherence length was shorter than the
barrier), such a resonant tunnelling conductance could not occur. For a wide barrier (wider
than the coherence length) any transport mechanism must rely on hopping and not on resonant
tunnelling.

Next, equation (6) will be substituted in (4) to evaluate the scattered wavefunction.
The conductivity in the two-terminal case can now be calculated. According to [9],

σ = 4i
∑
λ

∂f

∂ε

∫
dy

(
∂ψ∗λ
∂x

ψλ − CC

)
(7)

where: f (ελ − ζ ) is the Fermi distribution function (ελ are the energy levels andζ is
the electrochemical potential); the summation overλ denotes summation over the quantum
numbers (i.e. the energy levelsE and the generalized momentumy-componentk); the
integration overy is over the width of the sample, and the asterisk stands for a complex
conjugate (CC).

In equation 7 only a few impurities are at resonance and all the rest are out of resonance.
Therefore, only these few make the major contribution to the conductivity (a resonant tunnelling
current).

Now, suppose that the energies of the impurities are uniformly distributed. Then, instead
of integrating over the energy, one may sum over the contributions (5a) or (6) from all the
impurities.

∂f/∂ελ behaves like a delta function around the Fermi level (ζ ), and thus for a very low
temperature (T ) one can also use the following approximation:

∂f/∂ελ −→
E−ζ�T

T −1 e−|E−ζ |/T . (8)

Then by substituting (6) and (8) in (7), and measuring the conductivity atx:

σ(x > L) ≈ T −1
∫

dy g(y) (9)
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where

g(y) =
∑
i

e−
|Ei−ζ |
T e−4κi |xi |−2(

√
κ2
i +Ei(y−yi )2/r2

i −κ)(L−xi ). (9a)

Ei , xi , yi , ri andκi are the resonance energy of theith impurity, its x andy coordinates,
r2
i ≡ (x − xi)2 + (y − yi)2 and

√
V − Ei respectively. Notice the difference betweenE0i ,

which characterizes only the impurity, andEi ≡ V − E0i , which depends also on the barrier
(that is,κi =

√
E0i).

In (9a) the summation is taken over all the impurities. The idea is the following.
Since one can assert that each one of the impurities has, more or less, a different resonance

energy, and since the resonance width is always (for all the impurities) very narrow, it should be
possible to do the following projection: every impurityi will be identified with its resonance
energyEi0. As a consequence, since the impurities’ resonance energies are uniformly
distributed, one can sum over the impurities (while taking their resonance contribution) instead
of integrating over the energies. This is the basic idea that led to equation (9).

WhenT = 0, the main contribution to the conductivity comes from the impurities, whose
resonance energy is equal to the Fermi energy (i.e.E ∼= V − Ei0 as equation (5b) suggests).
However, the probability that these impurities will be located at the centre of the barrier, i.e. at
xi = 0 is miniscule and by equation (5b) their contribution to the conductivity could be very
small. When the temperature is finite (T > 0), the energy range of the incoming particles is
finite and thus the prospect of finding resonant impurities in the vicinity of the centre of the
barrier is larger. As a consequence the conductivity (the resonant tunnelling current) increases.

Because of the uniform distribution of the impurities inside the barrier, the number of
impurities in a given region is proportional to its area. Therefore, in a given areaÃ the average
difference between two energetically adjacent resonance levels is proportional toÃ−1. Thus,
the energy of the impurity, whose energy is the closest toζ inside this area, maintains the
relationEi − ζ ≈ Ã−1. Hence, if we measure the wave-function at a specificy (later on we
integrate over this variable—see equation (9)) we can substitute in equation (9a)Ei−ζ ≈ R−2

whereR2 ≡ x2
i + (yi − y)2.

Next, since the summation is taken over all the impurities, and since they are distributed
uniformly within the barrier, we can replace the indexi with two indices: one for thex-
coordinate of the impurity and the other for itsy-coordinate. This means that now every
impurity will be identified by two indices (its coordinates) instead of one (i—which was
related to its energy). In both cases we sum over all the impurities so the order of summation
is not important.

Instead of calculatingg(y) for a specificy and then integrating overy, in our analysis we
calculate theaverageg(y) and then simply multiply it by the sample width.

The conductivityσ should be independent ofx; however, since a few approximations
were used one cannot substitute in (9a) any value forx. Instead, when the impurities are weak,
i.e.E0i � ζ (and thusκ � k), x should be taken as

x ≈ L
√
k/κ (k =

√
ζ , κ =

√
V − ζ ).

This is the only region which is consistent with the approximation that led to (5a), i.e.x � L

and with the demand that|xi | < L for everyi.
Thus, by replacing the summation in (9a) with the summation over the impurities’

componentsη ≡ xi andξ ≡ yi − y, it follows that

σ ≈
∑
η,ξ

e−f (η,ξ) (10)
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Figure 2. The surface graph of the function8(η, ξ) = e−f (η,ξ). The maxima atη = 0
determine theσ ≈ exp[−(T H2 /T )1/2] behaviour, while the maxima atξ = 0 determine the
σ ≈ exp[−(T L2 /T )1/3] behaviour.

where

f (η, ξ) ≡ 1

(η2 + ξ2)NT
+ 4κ|η| +

√
ζ

(
ξ

L

)2

(L− η) (10a)

N is the density of states at the Fermi energy, and we evaluatedE ≈ ζ for everyη andξ (and
thusκ ≈ √V − ζ ). We also used in the exponent the following approximation√

κ2 +E(ξ/ri)2
∼=
√
κ2 +E(ξ/x)2 ∼= κ + 1

2

√
ζ (ξ/L)2. (10b)

The second term in equation (10a) increases with theabsolutevalue ofη, and thus expresses
the predominance of impurities, which are close to the centre of the barrier. The third term
in (10a), which depends on the square ofξ , expresses the fact that particles ‘prefer’ to tunnel
through the shortest path (see a discussion on this subject in [12]). These two parametric
dependences emphasize the significance of the barrier geometry on the RT process.

In general,f (η, ξ) has four minima of two kinds. However, when

T < Tc ≡ 4

36

ζ 3/2

Nκ4L3
(11)

(in ordinary physical dimensions, i.e. when 2m and h̄ are different from 1, the transition
temperature iskBTc = h̄ζ 3/2/[

√
2mN(V − ζ )2L3], wherem is the electron mass inside the

barrier).
The two dominant minima are atξ = 0,η = ±(2κNT )−1/3 and thus the conductivity can

be evaluated:

σ ≈ exp

[
− 3

(
4κ2

NT

)1/3 ]
. (12)

This expression resembles the Mott temperature dependence of a 2D sample, i.e.σ ∼
exp[−(T L2 /T )1/3] where T L2 = 108κ2/N , and in ordinary physical dimensionskBT L2 =
216m(V − ζ )/(Nh̄2). The superscript ‘L’ stands for low temperatures and the subscript ‘2’
stands for 2D.

On the other hand, when

T > Tc (13)
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Figure 3. The conductivity behaviour lnσ ≈ −T γ divides theT –ζ (temperature–electrochemical
potential) diagram into two parts (‘phases’): above the transition curve (highT ) with γ = −1/2
and below the transition curve (lowT ) with γ = −1/3.

the conductivity is governed by the other two minima atξ = ±(L/√ζNT )1/4, η = 0 (see
figure 2). In this case, the conductivity can be evaluated as

σ ≈ exp

[
− 2

( √
ζ

LNT

)1/2 ]
. (14)

This last result resembles Mott’s VRH theory for 1D samples or the ES theory for 2D ones.
HereT H2 = 4

√
ζ/LN , and in ordinary physical dimensionskBT H2 = 4

√
2mζ/(LNh̄). The

superscript ‘H ’ stands for high temperatures.ζ is measured in units ofV whileT is measured
in units of 1/(N

√
VL3).

Thus, we conclude that the power in the exponent of the conductivity changes from (−1/3)
for low temperature to (−1/2) for higher ones, while the transition temperature depends both
on the chemical potential and on the barrier parameters. The transition can be seen in the
‘phase diagram’, which is presented in figure 3. A similar transition in the presence of a strong
magnetic field has been anticipated elsewhere [11].

Although the temperature dependence is similar to the theories of Mott [1] and ES [4] the
physics is quite different. In their theories the conductivity is governed by VRH. That is, they
are based on thermal activation. Moreover, it is assumed that the coherence length is quite
small and thus resonant tunnelling is totally ignored. In the presented model, however, the
temperature is so low that the coherence length is larger than the sample dimensions, and thus
non-activated resonant tunnelling is the main transport mechanism.

In order to observe the transition easily, one should demand bothTc < T L2 andTc < T H2 .
However, it can easily be shown that this requirement can be achieved for a very wide barrier.
In particularκL >

√
ζ/κ will assert the two demands.

A straightforward calculation verifies a simple expression, which relates the transition
temperatureTc to bothT L2 andT H2 :

Tc = (T H2 )
3

(T L2 )
2
. (15)

The transition temperature depends on four parameters, and thus can vary considerably between
one experiment and another.

Since in ordinary experimentsT L2 /T
H
2 = 102–103 the transition temperature is extremely

low, Tc < (10−4–10−6)T H2 . In particular, for a typical experiment withT H2 = 101–102 K, the
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transition temperature should be within the scopeTc ≈ (10−2–10−5) K, which is quite a broad
range of temperatures.

In general, a similar transition occurs in any dimensionality. For ad-dimensional sample
within the low-temperature regime (T < Tc), the conductivity behaves like lnσ ∼ −T −(d+1)−1

,
while above the transition curve (T > Tc) one meets the following temperature dependence:
ln σ ∼ −T −(d/2+1)−2

.
To summarize, a model based on resonant tunnelling was presented in order to calculate

the conductivity of an amorphous sample at low temperatures. Unlike the Mott and ES theories,
the conductivity was calculated for a finite size sample, and this was found to have a crucial
impact on the conductivity. The model demonstrates a temperature transition (for a general
d-dimensional sample):

ForT > Tc the conductivity behaves like

σ ≈ exp[−(T Hd /T )1/(d/2+1)]

(whend = 2 it is similar to the ES theory or to thed/2-dimensional Mott VRH theory) while
whenT < Tc it looks similar to the well knownd-dimensional Mott conductivity

σ ≈ exp[−(T Ld /T )1/(d+1)].
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